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Example: Learning to recognize handwriting

Abstract
We view immune systems as learning machines that extract information from their 

environments, encoding it in an internal representation that enables the machine to improve its 
performance (e.g., measured as host survival) over time.

The core resulting hypothesis is that such machines can operate in at least two performance 
regimes.  In a "stationary environment", the machine faces an essentially fixed distribution of 
environmental stimuli, such as an individual that faces a predominantly fixed population of 
pathogens in its lifetime.  This regime corresponds to "classical" learning machines, which display a 
characteristically-shaped asymptotic learning curve.  Such learning machines are well understood 
in the applied and theoretical learning literature, and we intend to apply those tools and 
techniques to understand how certain features of adaptive immunity allow effective response to a 
wide variety of pathogens.  For example, classical learning results predict that fixed-capacity 
learning machines are sufficient to learn a finite complexity, stationary concept.  This may explain 
why a fixed-length antigen-binding variable region (essentially a fixed-length pattern recognizer) in 
each antibody and a fixed B-cell population size are sufficient to recognize almost any pathogen.

However, the adaptive immune system must also perform well in a second, "non-stationary," 
regime, in which the environment adapts in response to the learning machine.  Here, both 
pathogen and host immunity are considered learning machines, engaged in a competitive game or 
"arms race".  For example, both immune system and pathogen "learn" to respond to each other 
over evolutionary time via differential survival of host organisms and pathogens. The adaptive 
immune system also learns to recognize an evolving population of pathogens within an individual's 
lifespan through somatic hypermutation. This non-stationary regime is less well studied or 
understood from a learning theory perspective, however fixed-capacity learning machines do not 
appear to be adequate.

We propose to investigate this hypothesis both to understand the evolution of complexity in 
the immune system and to better understand the dynamics of learning in the nonstationary 
regime.

Individual mouse vs pathogens 
exposed to in its lifetime Individual human vs HIV

Human population vs flu population 
or

Bird population vs WNV population 

Host somatic hypermutation 
generates effective B cell repertoire. 

Lymphocyte diversity declines with age 
[1] due to repeat exposure to similar 

pathogens 

Measure Ab diversity with age in control 
mice exposed to a constant pathogen 
population and mice continuously 
exposed to new pathogens:  Ab  
diversity asymptotes only in control 
mice
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Viral genome evolves within 
each host to evade CD8 CTL [2].

Measure change in viral genome 
diversity in response to drug 
treatment and CTL response: 
Expect viral titer to asymptote 
and diversity to peak & decline
Question: do CTL continuously 
evolve in response to HIV?

Hosts: Somatic hypermutation, MHC 
evolution, cross reactive immunity
Viral genome: evolves multiple 

serotypes, antigenic drift & shift  [3].

Measure Viral genome & host MHC diversity in 
different ecosystems. Expect 
-Viral strain diversity increases with host diversity
-Higher MHC evolution in species with high 
mortality (higher in corvids vs robins) 

-MHC evolution asymptotes only where viral 
diversity asymptotes 

Machine Learning Background

Discussion
• We attempt to predict how pathogens and immune responses co-
evolve given different time scales of evolution for each. 

• Viruses & adaptive immunity evolve over short (e.g. HIV & somatic 
hypermutation) and long (e.g. antigenic shift in influenza & MHC 
evolution) timescales.

• Effective immune response & therapies operate where τh≫τp
• Hypothesis 1: Nonstationary regime drives complexity

- E.g. arms race between MHC and viral strains increases 
complexity of both: mutual moving targets
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Stationary Regime Nonstationary Regime

A learning machine is a system that observes some 
environmental data and modifies its internal state so as 
to improve its performance over time.

The canonical
learning curve
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Two performance regimes:
  • Stationary: distribution of data unchanging w.r.t. time
    - Asymptotic performance [4]
    - Finite information in environment and model
    - Fixed capacity (fixed model size) sufficient

• Nonstationary:
  - Data changing as model updated
  - Much less well understood
  - May require unbounded model

• Hypothesis 2: Representation/learning capacity for stationary regime 
immune mechanisms can be bounded; learning capacity for 
nonstationary regime must be unbounded

  - E.g., Fixed-length antigen strings vs. unbounded genetic string length 
representation for MHC et al.

• Studying evolutionary arms races may guide ML algorithms for 
nonstationary learning domains

We Seek Suggestions for experimental systems to test 
stationary and nonstationary learning
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